Financial Disclosures

- No disclosures

Importance

- Know drugs you’re administering to patient
- Patient education
- Reactions
- Triage

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
 - Adrenergic and Cholinergic Agents
 - Mydriatics, Miotics, and Cycloplegics
 - Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infective (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions

Importance

- For the COA/COT/COMT
- Old (pre-2013):

<table>
<thead>
<tr>
<th></th>
<th>COA</th>
<th>COT</th>
<th>COMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology</td>
<td>-</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Advanced Pharmacology</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

New (post-2013)

<table>
<thead>
<tr>
<th></th>
<th>COA</th>
<th>COT</th>
<th>COMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>
COA/COT/COMT

Old

COA/COT/COMT

New

Instillation

- Essential Steps:
 - Wash Hands with Soap and Water or hand sanitizer
 - Check dropper tip for imperfections
 - Avoid touching dropper tip to any surface
 - Tilt head back, pull down lower eyelid with one hand
 - With other, hold dropper close to eye without touching it, brace hand on face if necessary
 - While looking up squeeze bottle so a single drop dispenses
 - Drop is successfully instilled if it lands anywhere on eye or in pocket created with lower lid
 - Close eye gently, and apply pressure with hand to tear duct
 - Dab eye (closed) with tissue
 - Wash hands
 - If instilling more than one drop wait at least 5 minutes between drops

Identification

- ALWAYS read label
- Coloured top for different drops
 - Red - cycloplegic/mydriatic
 - Green - miotics
 - Tan - antibiotics
 - Pink/white - steroids
 - Gray - NSAIDs
 - Yellow - beta blockers
 - Purple - alpha agonist
 - Teal - prostaglandin analogues
 - Orange - CAIs
 - Blue - Combo glaucoma
- Colours do NOT show concentration

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infective (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions
Nervous System

Autonomic Nervous System
- Regulates involuntary actions of body
- Consists of two parts:
 - Sympathetic – primarily excited state of body
 - “Flight of fight”
 - Parasympathetic – primarily rest and relaxation
- Two systems oppose and work together for dynamic homeostasis
- Sends messages by way of nerve impulse (action potential) using neurons and neurotransmitters

Autonomic Nervous System
- Drugs can either enhance or depress a given system
- Mimetic – “mimics” system, increases activity
- Lytics – decrease activity
- Sympathomimetic – increase sympathetic activity
- Sympatholytic – decrease sympathetic activity
- Parasympathomimetic – increase parasympathetic activity
- Parasympatholytic – decrease parasympathetic activity

Autonomic Nervous System
- Sympathetic:
 - Pre-ganglionic: Nicotinic
 - Post-ganglionic: Adrenergic ($\alpha_1, \alpha_2, \beta_1, \beta_2$)
 - Effector: Organ
- Parasympathetic:
 - Pre-ganglionic: Nicotinic, Muscarinic
 - Post-ganglionic: Nicotinic (Muscle, Neuronal)
 - Effector: Organ

Autonomic Nervous System
- Sympathetic Nervous System
 - Tends to have excitatory end physiologic effect
 - But excitatory and inhibitory signals to an excitatory system
 - Fight or flight response
 - Pupils dilate
 - Breathing increases, bronchioles dilate
 - Heart rate increases, increase contraction, vasoconstriction to skin and digestive organs
Autonomic Nervous System

- Sympathetic:
 - Pre-ganglionic Nucleus → Ganglion → Post-ganglionic Effector Organ (Adrenergic $\alpha_1, \alpha_2, \beta_1, \beta_2$)
 - Neurotransmitter: Ach
 - Receptor Type: Nicotinic

- Parasympathetic:
 - Pre-ganglionic Nucleus → Ganglion → Post-ganglionic Effector Organ (Muscarinic M_1, M_2, M_3, Nicotinic (Muscle, Neuronal))
 - Neurotransmitter: Ach
 - Receptor Type: Muscarinic M_1, M_2, M_3

Sympathetic Nervous System

- Neurotransmitters: Epinephrine, Norepinephrine
- Receptors: Adrenergic ($\alpha_1, \alpha_2, \beta_1, \beta_2$)
- Sympathomimetic: Adrenergic Agonists
- Sympatholytic: Beta blockers

Parasympathetic Nervous System

- Neurotransmitters: Acetylcholine
- Receptors: Muscarinic (M_1, M_2), Nicotinic (muscular, neuronal)
- Parasympathomimetic: Cholinergic Agonists
 - Pilocarpine
- Parasympatholytic: Most cycloplegics and mydriatics

Autonomic Nervous System

- Parasympathetic Nervous System
 - Tends to have resting effects “rest and digest”
 - But excitatory and inhibitory signals
 - Conserve Energy
 - SLUD
 - Salivation
 - Lacrimation
 - Urination
 - Defecation
 - Pupil constrict
 - Digestion
 - Flushed Skin

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
 - Adrenergic and Cholinergic Agents
 - Mydriatics, Miotics, and Cycloplegics
 - Glaucoma Medications
 - Corticosteroids
 - NSAIDs (non-steroidal anti-inflammatory)
 - Anti-Allergy
 - Anti-infective (bacterial, viral, fungal)
 - Systemic Effects of Ocular Medications
 - Ocular Effects of Systemic Medications
- Self-Test Questions
Adrenergic Agents

- **Mydriatics**
 - Phenylephrine – vasoconstrictor
 - Other vasoconstrictor: Naphazoline
 - Cocaine

- **IOP lowering medications (decrease aqueous production)**
 - Beta blockers (timolol)
 - Alpha agonists (trimonidine)
 - Discussed more in glaucoma medications

- **Cocaine**

Miotics, Mydriatics and Cycloplegics

- **Miotics**
 - Dilate pupil as primary action
 - Nearly always have weaker cycloplegic effect
 - Phenylephrine – no cycloplegic effect
 - Also have α receptors on blood vessels
 - Has effect on skeletal muscle

- **Cocaine**

- **Phenylephrine**
 - Also have receptors on blood vessels
 - Has effect on skeletal muscle
 - Raise eyelid

- **Atropine**
 - Strongest of cycloplegics
 - Can have systemic toxicity
 - Nearly always on tests – in reality all systemic toxicity and deaths were on very young or mentally challenged patients
 - Look for redness, hot and dry skin, dry mouth, irregular pulse, hallucinations
 - Be cautious when administering to young children or with mentally challenged patients

Cholinergic Agents

- **Miotics**
 - Pilocarpine
 - Carbachol (Miostat) – muscarinic and nicotinic

- **Cycloplegic**
 - Atropine
 - Cyclopentolate
 - Tropicamide

- **Botox (blocks Ach)**

Miotics, Mydriatics and Cycloplegics

- **Mydriatics**
 - Phentolamine – α receptor blocker

- **Cycloplegic**
 - Atropine
 - Cyclopentolate – antimuscarinic

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infective (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions
Glaucoma

- IOP lowering medication
- Two ways to lower IOP
 - Increase outflow of aqueous
 - Decrease production of aqueous
- Classified by mechanism of action
 - Beta blockers (yellow)
 - Alpha Agonists (purple)
 - Prostaglandin Analogues (teal)
 - Carbonic Anhydrase Inhibitors (Orange)
 - Combination (blue)

IOP Lowering Medications

- Beta blockers
 - Non-selective for beta receptors
 - Beta 1 on ciliary body
 - Beta 2 on heart, lungs
 - Contraindicated in lung problems (asthma) or heart (low pulse or blood pressure)
 - Timolol 0.25%, 0.5% (Timoptic, Timoptic XE, Betimol, Istaol)
 - Levobunalol (Betagan)
 - Carteolol (Ocupress)
 - Betoptic S – Beta 1 selective

IOP Lowering Medications

- Adrenergic Receptors
 - Stimulation of beta receptors increases production
 - Stimulation of alpha receptors decrease production
 - Uses Carbonic Anhydrase to actively form aqueous (80%)

IOP Lowering Medications

- Cholinergic Agonists
 - Pilocarpine
 - Stimulates muscarinic receptors, stimulating accommodation, mechanically pulling open trabecular meshwork
 - Many side effects – accommodation, brow ache
 - Carbachol (Miostat) – intraocular, longer lasting

IOP Lowering Medications

- Adrenergic Agents – affect alpha or beta receptors
- Alpha agonists
 - Affect alpha 2 receptors
 - Decrease production and increase outflow
 - Brimonidine 0.2%, 0.15% (Alphagan 0.15%, 0.1%)
 - High allergic reaction rate in higher % concentrations
 - Iopidine

IOP Lowering Medications

- Carbonic Anhydrase Inhibitors
 - Oral and Topical
 - Inhibit carbonic anhydrase, reducing production
 - 80% of aqueous production is actively produced and requires anhydrase
 - Topical
 - Brinzolamide (Azopt)
 - Dorzolamide (Trusopt)
 - Oral
 - Acetazolamide (Diamox), Methazolamide (Neptazane)
 - Contraindicated with sulfa allergies
 - Oral side effects (tingling, fatigue, metallic taste, kidney stones)
IOP Lowering Medications

- Prostaglandin analogues
 - Latanoprost (Xalatan)
 - Lumigan
 - Travatan
 - Mimic Prostaglandins
 - Increase uveoscleral outflow
 - Prostaglandins are naturally occurring inflammatory markers, however concentration is low so there is no evidence to support causing inflammation in eye
 - Known side effects of skin pigmentation, increase iris pigmentation, lash growth (Latisse)

Inflammatory Process

- When there is an insult to the body it responds with inflammation
 - Beneficial to prevent infection and start healing
 - Some effects need to be tempered or eliminated
- Acute and chronic inflammation
- Main signs of inflammation:
 - Heat - vasodilation
 - Redness - vasodilation
 - Pain – chemicals stimulate nerve endings
 - Swelling – increased vascular permeability
 - Loss of Function – many reasons

IOP Lowering Medications

- Combo
 - Combigan (brimonidine and timolol)
 - Cosopt (timolol and dorzolamide)
 - Simbrinza (brinzolamide and brimonidine)

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cyclopletics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infective (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions

Inflammatory Process

- Steroids inhibit phospholipase A2, shuts down all of lower pathway
- NSAIDs inhibit cyclooxygenase, inhibiting pathway below
Corticosteroids

- Control inflammation, in various parts of body and eye
- Systemic and topical steroids
- Commonly in eye these are
 - Conjunctiva – scleritis, episcleritis
 - Cornea – edema, burns, haze, rejection (grafts)
 - Uveitis
 - Optic Nerve – any inflammation (neuritis)
 - Retina – edema, inflammatory syndromes
- Reduce redness, pain, swelling
 - Also decrease allergic response (histamines, mast cells)
- Very non-specific and acts high up in pathway

Topical Steroids

- Diffuprednate 0.05% (Durezol)
 - Emulsification greatest physiologic effect
- Prednisolone Acetate 1% (Pred Forte, Omnipred)
 - Acetate, good penetration, what most others are compared to
- Prednisolone Acetate 0.12% (Pred Mild)
- Dexamethasone 0.1%
 - Sodium phosphate (Decadron) and suspension (Maxidex)
- Loteprednol 0.5% (Lotemax)
- Loteprednol 0.2% (Alrex)
- Fluoromethalone 0.1% (FML)
- Also many combination Antibiotic/Steroids – will be covered in Antibiotic Section

Injectable Steroids

- Multiple advantages
 - Can be put nearer to location
 - Depot injected (longer lasting)
 - Can have greater penetration (intravitreal)
- Side effects correlate with some of those advantages
- Commonly include
 - Triamcinolone (Kenalog)
 - Decadron
 - Ozurdex*
- Multiple areas
 - Subconjunctival
 - Sub-tenon’s
 - Intravitreal
 - Translesional/Subdermal

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infective (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions
NSAIDs
- Non-Steroidal Anti-Inflammatory Drugs
 - Work lower down inflammatory pathway
 - Less effective in reducing inflammation, but fewer side effects
 - Decrease inflammation and fever, as well as pain (analgesic)

NSAIDs
- Ocular and systemic side effects of NSAIDs – ocular from drops, systemic from oral
 - Ocular
 - Corneal melt
 - Corneal toxicity
 - Systemic
 - GI upset and ulcers
 - Renal dysfunction
 - Photophobia

NSAIDs
- Include oral and topical
 - Non-Reversible (Aspirin) and Reversible (Others)
 - Oral
 - Ibuprofen (Advil, Motrin) – reversible
 - Naproxen (Aleve) – reversible
 - Aspirin/Acetylsalicylic Acid – non-reversible
 - Acetaminophen (Tylenol) – classified as NSAID but works differently, no anti-inflammatory properties but good analgesic (anti-pain) properties
 - Topical
 - Diclofenac (Voltaren)
 - Bromfenac (Prolensa, Bromday, Xibrom)
 - Ketorolac (Acular, Toradal)
 - Nepafenac (Ilevro, Nevanac)
 - Flurbiprofen (Ocuflun)

NSAIDs
- Ocular use approved for:
 - Reducing post-operative inflammation
 - Reducing risk of post-operative CME
 - Can treat CME (if mild, often started first due to being non-invasive)
 - Allergic conjunctivitis

Outline
- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infective (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions
Allergic Cascade

- Cascade of events that causes allergic response
- Allergic response wide range of symptoms from mild to severe, usually includes itching, redness, swelling, or anaphylactic
- Allergen (environmental stimulus) binds to IgE that is attached to a mast cell, which then releases histamine
- Histamine interacts with histamine receptors, majority of symptoms from binding H1 receptor

Anti-Allergy Medications

- Oral antihistamine
 - Benadryl (first generation)
 - Claritin, Allegra, Zyrtec
- All anticholinergic (parasympathetic system)
 - Increase dry eye
- Topical
 - Bepotastine besilate (Bepreve)
 - Alcaftadine (Lastacaft)
 - Olapatadine (Pataday, Patanol)
 - Ketotifen fumarate (Zaditor) – OTC

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infectives (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions

Infections

- Infection occurs when a microorganism invades the body, and the body can’t repel it
- Can be bacterial, fungal, viral, or parasitic
- Immune system divided into two systems
 - Innate – mechanical barriers and non-specific cells
 - Adaptive – responds following exposure
- Immune compromised (HIV/AIDS, on steroids etc) are more susceptible
- Nearly always has associated inflammation, but inflammation and infection are NOT the same
Anti-Infective Agents

- Each type of anti-infective is designed to combat a certain type of infection
 - Antibacterial (bacteriostatic and bacteriocida) – bacteria
 - Antiviral – virus
 - Antifungal – fungal
 - Antiparasitic – parasite
- “Spectrums of action” for each drug – the range of microbes the drug is effective against

Antibacterial Agents

- Combat bacterial infections
- Classified into two categories
 - Bacteriostatic – Prevent further bacterial growth
 - Bacteriocidal – Kills bacteria
- Large spectrum of bacteria, no one drug that kills all
- Biggest difference in range is based on cell wall of bacteria
 - Gram Positive – Staphylococcus and Streptococcus
 - Has thick cell wall
 - Gram Negative – pseudomonas, haemophilis
- Resistance – as antibiotics are used, bacteria can develop resistance to them, making that antibiotic less useful

Antiviral Agents

- Effective against viruses
 - Mostly used to treat Herpes Simplex and Varicella Zoster, as well as cytomegalovirus
 - Herpes Simplex
 - Type I and Type II – usually Type I (cold sore)
 - Varicella Zoster – chicken pox, follows trigeminal nerve
 - Hutchinson’s Sign
 - Zoster vaccine
Antiviral Agents

- Oral and Topical
- Topical
 - Gangiclovir gel (Zirgan)
 - Trifluridine (Viroptic)
- Oral
 - Valacyclovir (Valtrex)
 - Acyclovir
- Often injected:
 - Foscarnet
 - Ganciclovir
- Usually for CMV in patients with AIDS/HIV

Antifungal Agents

- Fungal infections tend to be slow growing but can be very damaging with often poor prognosis
- Two main types of fungal infections
 - Filamentary – Most commonly Aspergillus, sometimes Fusarium
 - Yeast – Most commonly Candida
- Only one drug (natamycin) designed for topical available in US, others adapted for ocular treatment:
 - Natamycin – best for filamentary
 - Fluconazole – best for yeast
 - Amphotericin B – very toxic to cornea, but often needed

Combination Anti-Bacterial/Steroid

- Combination drops that include anti-bacterial and steroids
 - Tobradex – tobramycin and dexamethasone
 - This is NOT Tobrex
 - Maxitrol – neomycin, polymixin B, dexamethasone
 - Higher allergy rate (neomycin)
 - Zylet – loteprednol and tobramycin
- Extremely common prescribed
- Difference in stopping steroid vs antibacterial

Outline

- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Anti-infectives (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications
- Self-Test Questions

Systemic Effects of Ocular Medications

- Effects of ocular medications all can have systemic effects, though often much reduced
- Can reduce side effects by punctual occlusion when instilling
- Some common things to watch for:
 - Beta blockers – can affect vasoconstriction and pulse, watch for breathing or cardiac problems
 - CAIs – metallic taste
 - Phenylephrine – could increase heart rate, contraindicated in pregnant patients
 - Atropine – anticholinergic - possible parasympathomimetic crisis
 - Any drug (often sulfa or antibiotics) – SJS

Ocular Effects of Systemic Medications

- Prednisone – PSC, increase IOP
- Alpha blockers (Flomax) – IFIS and poor iris dilation
- Antihistamines – Dry Eye
- Amiodarone – vortex keratopathy
- Chloroquine, Hydroxychloroquine (Plaquenil) – maculopathy, rare vortex keratopathy
- Oral contraceptives and tetracyclines – papilledema
- Ethambutol – optic neuritis
- Barbituates – optic atrophy
Outline
- Importance
- Instillation
- Identification
- Autonomic Nervous System
- Adrenergic and Cholinergic Agents
- Mydriatics, Miotics, and Cycloplegics
- Glaucoma Medications
- Corticosteroids
- NSAIDs (non-steroidal anti-inflammatory)
- Anti-Allergy
- Antibiotics (bacterial, viral, fungal)
- Systemic Effects of Ocular Medications
- Ocular Effects of Systemic Medications

Self-Test Questions

Which of the following situations should cause you concern?
- A) Instilling tropicamide in a pregnant patient
- B) Instilling a steroid in a patient who just finished a course of Zirgan and Valtrex for herpes simplex
- C) Instilling Atropine in a child with Down’s Syndrome
- D) Instilling a prostaglandin in a patient with sulfa allergies

The primary neurotransmitter of the parasympathetic nervous system is:
- A) Acetylcholine (Ach)
- B) Epinephrine/Norepinephrine (Epi/Norepi)
- C) Dopamine
- D) GABA

Phenylephrine works as a ____________ system, while most cycloplegics work as ____________

- A) sympatholytic, sympathomimetic
- B) sympathomimetic, parasympatholytic
- C) sympathomimetic, parasympathomimetic
- D) parasympatholytic, sympathomimetic

The _________ and _________ of the autonomic nervous system work together to balance each other

- A) Parasympathetic, Antiparasymathetic
- B) Sympathetic, antisymathetic
- C) Sympathomimetic, Parasympathomimetic
- D) Parasympathetic, Sympathetic

Match the cap colour with the drug class
- Dilating agents
- Miotics
- Antibiotics
- NSAIDs
- Steroids
- Beta blockers
- Alpha agonists
- CAIs
- Prostaglandins

- Pink/White
- Tan
- Orange
- Grey
- Red
- Purple
- Green
- Yellow
- Teal
Punctal occlusion does when instilling drops?
- A) Reduces risk of contamination
- B) Reduces risk of systemic adverse events
- C) Increases potency of drop
- D) Increases effective concentration of drop

Which of the following IOP lowering medications work on the adrenergic receptors or the sympathetic nervous system – choose all that apply?
- A) CAIs
- B) Beta blockers
- C) Prostaglandin analogues
- D) Alpha agonists

Steroids should be used in which of the following situations?
- A) Fungal infection
- B) Viral infection
- C) Inflammation
- D) Allergic reactions
- E) A and B
- F) C and D

Which of the following could be contraindications for Cosopt (Timolol-Dorzolamide)?
- A) Breathing problems
- B) Low pulse
- C) Sulfa allergy
- D) All of the above

Systemic steroids can cause which of the following?
- A) Cataracts
- B) IOP increase
- C) Blood sugar dysfunction
- D) All of the above

Which is broader acting in its effects on the body?
- A) Corticosteroids
- B) Reversible NSAIDs
- C) Irreversible NSAIDs
- D) Antihistamines
What two medications could be combined without increasing the risk of overdosing?

A) Aspirin and Ibuprofen
B) Ibuprofen and Naproxen
C) Naproxen and Aspirin
D) Ibuprofen and Acetaminophen

A topical antiviral is:

A) Zirgan (ganciclovir)
B) Natamycin
C) Tobradex
D) Prednisolone

Steroids work to inhibit ______ which is relatively ______ while NSAIDs inhibit ______ which is relatively ______

A) COX (cyclooxygenase), upstream, Phospholipase, downstream
B) COX (cyclooxygenase), downstream, Phospholipase, upstream
C) Phospholipase, upstream, COX (cyclooxygenase), downstream
D) Phospholipase, downstream, COX (cyclooxygenase), upstream
E) I stopped reading already

The drop with the largest spectrum of action (coverage) is:

A) 1st generation fluoroquinolone
B) Tobramycin
C) 3rd generation fluoroquinolone
D) Erythromycin

If you have seasonal ocular allergies the best choice to minimize symptoms would be:

A) Start antihistamine 2 weeks before the onset
B) Start mast cell stabilizers/antihistamine combo 2 weeks before onset
C) Take an antihistamine/mast cell stabilizer at first symptoms
D) Start antihistamine at first symptoms

The most severe adverse reaction listed is:

A) Conjunctival injection
B) Epiphora
C) Swelling of mucosal membranes
D) Blurriness instantly upon instillation
Which of the following has a black box warning for tendonitis?

- A) Cephalosporins
- B) Macrolides
- C) Aminoglycosides
- D) Fluoroquinolones

If a patient is allergic to penicillin, what are they immediately also considered allergic to?

- A) Cephalosporins
- B) Fluoroquinolones
- C) Macrolides
- D) Aminoglycosides

THANK YOU!